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Preface

This technical report, published as a monographic book, deals with the problem
of localization of a vehicle with a 3D laser scanner. Localization without GPS is
currently a research topic with increased public interest due to the vast possible
applications with a still elusive dream of an autonomous vehicle. Therefore, the
book covers the process of developing a new featurebased laser simultaneous lo-
calization and mapping system and presents a complete evaluation in different
conditions.

The core idea is to propose an efficient representation of planes and lines in-
stead of the typical approach operating on points. The created map of planes and
lines is used to obtain a more accurate representation of the environment and to
obtain a greater localization accuracy. The book describes in detail the develo-
ped system and gives an overview of the feature processing pipeline. Conducted
experiments made it possible to verify the efficiency of the created solution and
to present the comparison of results obtained without and with high-level featu-
res. The experiments performed in both indoor and outdoor environment in road
traffic conditions were analyzed to compare the accuracy and perform the time
analysis of the processing steps of the algorithm.

The book is a natural extension of my master thesis titled “Feature-based
laser simultaneous localization and mapping system“ and supervised by Michał
Nowicki, PhD, as this topic was also my main research direction in the project
“Advanced driver assistance system (ADAS) for precision maneuvers with
single-body and articulated urban buses” supported by National Centre for Rese-
arch and Development under grant POIR.04.01.02-00-0081/17. Due to the close
collaboration with Solaris Bus & Coach S. A., it was possible to perform experi-
ments on a real city bus in scenarios resembling regular operation of such a bus
in a sub-urban (small town) environment. I’m grateful for this opportunity. Mo-
reover, I would like to thank the SICK Polska Sp. z o.o. for their help with the
SICK MRS6000 sensor and for providing its documentation.

I would also like to express my gratitude to Piotr Skrzypczyński for continu-
ous discussions and always pushing me to achieve better results.
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Chapter 1
Introduction

Mobile robotics is a field of science that combines different sub-fields, such
as robotics, information engineering, mechatronics and electronics. The state-
of-the-art in the field rapidly evolves with the constantly increasing number of
possible usages and applications of mobile robots.

These robots are already widely used in automotive [6], transport [29], mi-
litary [25] and by emergency services [22]. In the last few years, there was also
an increase in the popularity of flying robots used for civil applications such as
aerial photography [4].

Most of these purposes require some degree of autonomy for proper ope-
ration as the robots are required to perform more complex tasks. Therefore
the system’s reliability and robustness to different environmental conditions is
sought from the proposed solutions. For that reason, it is important to verify im-
plemented algorithms in different conditions, so that they could be used in a
predictable and safe way.
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1.1 PROBLEM STATEMENT

One of the key requirements for the autonomy of mobile robotics is self-loca-
lization as robots must be able to determine their position in order to perform
appropriate actions. What is more, they should be capable of detecting surroun-
ding objects, for example, to avoid collisions and plan their motion. Therefore,
the Simultaneous Localization and Mapping (SLAM) problem has to be solved,
which is possible with systems utilizing data from cameras [13] or laser scanners
[14].

Systems based on these sensors do not require a Global Positioning System
(GPS) signal to work properly, which might not be available or reliable for some
applications. An example of such usage would be an Advanced Driver Assistance
System (ADAS) applied in a vehicle moving in urban traffic. Its function wo-
uld be to assist the driver while parking or maneuvering, especially in narrow,
urban areas and in GPS-denied environments such as an underground car park.
The system should be capable of self-localization in relation to other vehicles,
buildings or landmarks, but only on relatively short distances. It is due to the fact
that the localization error usually increases with time as laser mapping is an ite-
rative process susceptible to drift. Whereas the above-defined requirements could
be satisfied by a relatively simple laser-based (visual) odometry system that re-
gisters together with the consecutive scans in a source-to-target manner, we have
decided to develop a system that builds a persistent map of the environment. The
reasons for this decision are threefold:

• registration of the incoming scans to a map decreases the trajectory drift;
• the map can be further structured (into features) and used to handle more

complicated situations, such as removal of spurious measurements or
whole objects (e.g. dynamic);

• the spatial data collected in the map can be used to support motion plan-
ning algorithms and safety measures, which is however beyond the scope
of this report.

Such a solution, which can be considered a SLAM system, is developed in the
project performed by the Poznan University of Technology (PUT) and Solaris
Bus & Coach (SBC). Its goal is to provide a system that will localize an electric
bus relative to the charging station and help the driver during maneuvering. For
this reason, the goals of this report coincide with the mentioned project require-
ments.

Feature-based laser simultaneous localization and mapping for automotive applications
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1.2 MOTIVATION AND GOALS OF THE REPORT

Laser scanners provide a large amount of data that has to be processed in real-
time for the SLAM algorithm to provide accurate and up-to-date localization
estimated. The purpose of this report is to propose a solution that will improve
one of the state-of-the-art laser-based SLAM algorithms. The new approach is
to detect and utilize higher-level features (planar surfaces) extracted from laser
scans that will group the measured points. The main difference with respect to
the original approach used in LOAM [32] it the fact, that the planar features are
permanent in the map, i.e. they can be updated with new measurements, which
allows them to grow much bigger than in LOAM. This, in turn, makes possible
to represent meaningful geometric structures (e.g. walls) with individual features.
This can potentially reduce the algorithm’s computational complexity because
this will make it possible to search for the scan points correspondences only in
the closest features from the map. These features are also used to improve the
robustness of the SLAM algorithm due to a more accurate feature-based map
representation. What is more, the system based on planar features should be cha-
racterized by increased precision, because points that do not match any feature
can be rejected. It is particularly relevant in urban areas with many buildings or
in an indoor environment. Reduced map size will also contribute to a smaller
number of calculations that are necessary for the optimization and thus accelerate
this step. The solution with persistent geometric features solution gives an op-
portunity to perform optimization by finding correspondences between detected
features instead of points. This is, however, a matter of our further research, and
is not covered in this relatively short report.

Chapter 1 Introduction
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1.3 REPORT ORGANIZATION

The report is divided into the following chapters:

• Chapter 2 presents the state of the art. It contains a description of the
laser-based systems used as the base implementation for the proposed mo-
difications. It also shows different approaches to localization problems.

• Chapter 3 describes the main components of the proposed system. It de-
scribes the process of creating, merging and deleting of planar features
that are used to represent the registered environment map.

• Chapter 4 contains a description of the used sensory setup and the con-
ducted tests. It also presents the obtained results and their analysis.

• Chapter 5 concludes all the work and suggests future work.

Feature-based laser simultaneous localization and mapping for automotive applications
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Chapter 2
State of the art

2.1 2D LASER SCANNING

Depending on the application, it may be sufficient to create only a 2D map of the
surrounding environment. This problem is well-researched with several existing
solutions. One of the golden standard solutions is Hector SLAM [16]. This sys-
tem represents the existing map as an occupancy grid that is interpolated when
needed to increase the accuracy. The incoming scans are then matched to the
map utilizing the Gauss-Newton optimization to determine the best transforma-
tion that aligns the current laser scan with the map.

Another well-known 2D SLAM system is GMapping [11]. It is a grid-based
SLAM, whose main feature is that it utilizes Rao-Blackwellized particle filter to
solve localization and mapping problem. Each particle represents a single possi-
ble trajectory of a robot and carries its individual map. The biggest downside of
this approach is the computational complexity and memory requirements that in-
crease with the required number of used particles. For this reason, authors in [10]
proposed a solution to improve the efficiency of the algorithm.

A more recent system is Google’s Cartographer [12] that is composed of
local and global subsystems. Local SLAM is responsible for building submaps
constructed with sequential scans joined using the scan matching method. Global
SLAM runs in the background and its task is to check for loop closure constraints
in order to arrange submaps in such a way to obtain the consistent global map.
Cartographer does not implement any filtration method such as particle filters but
instead uses graph-based optimization. This makes it possible to achieve satisfy-
ing results with modest hardware.

All algorithms mentioned in this section are available as packages in the Ro-
bot Operating System (ROS) [21], an open-source operating system providing
many useful libraries for robot applications.
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2.2 ITERATIVE CLOSEST POINT (ICP)

An important factor in computing a reliable sensor motion estimate from a pair
of associated scans is how many Degrees of Freedom (DOF) we have to handle.
A free-floating sensor has 6 DOF, but some of these DOFs can be easily elimi-
nated making commonsense assumptions, e.g. that the vehicle moves on a planar
surface, or measuring the yaw and pith angles with respect to the gravity vector
(using accelerometers). Solving the scan-matching problem with 3 DOF reduces
computational complexity compared to 6 DOF solutions, but cannot be always
applied to point cloud data in practical scenarios.

When point clouds from 3D laser scanners or RGB-D sensors are available,
ICP [26] is usually used to match two point clouds. This method is based on di-
stance calculation between points contained in both point clouds and its goal is
to find best correspondences and iteratively calculate transformations between
them. As a result, it creates a single model of the environment from the combined
scan data. This is crucial in some applications such as terrain mapping and 3D
reconstructions because of the limited range of the sensors that can not scan the
whole scene during a single measurement. What is more, it gives the possibility
to register some objects that were occluded initially but got revealed later. There
also exist many alternative solutions for point cloud matching. A comparison of
different point registration algorithms is contained in [2].

Feature-based laser simultaneous localization and mapping for automotive applications
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2.2.1 Point-to-point ICP

Point-to-point ICP algorithm determines the corresponding points in both clouds
by searching for the nearest points in given sets based on Euclidean distance [20,
26]. For the i-th point in the original cloud, the distance di to the closest point in
the second point cloud can be written as:

where:
mi, sj − points in given point clouds
NS, NM − number of points in point clouds

At this moment, points that do not have their correspondence closer than
some threshold might be rejected in order to improve algorithm accuracy. After-
wards, both point clouds are centered. For this step it is necessary to compute the
centroids CM and CS of the point clouds using the following equations:

where:
N − number of corresponding point pairs

Subsequently, points in given cloud are aligned with the center by subtrac-
ting calculated centroid from points coordinates:

The next step is to compute the transformation matrix which minimizes the
distance between two clouds. It consists of matrix of rotation and translation and
can be obtained using Singular Value Decomposition (SVD) of covariance ma-
trix H = M′S′ [30]:

Chapter 2 State of the art
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where:
U, V − orthogonal matrices
Σ − diagonal matrix

At this stage, rotation matrix R and translation vector t can be calculated
using following formulas:

Eventually, the algorithm calculates error using only points with proper cor-
respondence in the second point cloud. For this purpose, all points pairs are
assigned weights wij = 1 if they are corresponding ones or wij = 0 otherwise. This
way assigned weights indicate whether given pair of points should be included in
equation below:

where:
mi − point in the first point cloud
sj − point in the second point cloud
R − rotation matrix
t − translation vector
wij − equals 1 for corresponding points pairs and 0 otherwise

Based on the result, algorithm continues or stops iterating until it obtains re-
quired accuracy or exceeds maximum number of iterations i. The block diagram
of standard ICP algorithm is shown in Fig. 2.1.

Feature-based laser simultaneous localization and mapping for automotive applications
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Figure 2.1: Block diagram of the point-to-point ICP

There exist modified types of the algorithm that were implemented to im-
prove speed or accuracy of point clouds matching. One of them utilizes k-d tree
[9, 19] structures for faster searching of closest neighbors. K-d trees are binary
search trees that partition space to organize points. This approach significantly
accelerates calculations, as searching for the closest neighbor is the most time-
consuming operation required during scan matching.

Chapter 2 State of the art
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2.2.2 Point-to-plane ICP

An alternative version of the ICP algorithm is the point-to-plane ICP [3, 26], that
uses information about surface normals to improve accuracy. Instead of calcula-
ting error based on point-to-point distance, it calculates error based on the surface
normal vector. For this task, it requires additional information, namely a surface
normal associated with every point. The block diagram of point-to-plane ICP is
shown in Fig. 2.2.

Figure 2.2: Block diagram of point-to-plane ICP

Normal vector can be calculated by creating a covariance matrix of nearby
points and then using PCA (Principal Component Analysis) to calculate eige-
nvector associated with the smallest eigenvalue, as it corresponds with the surface
normal. Then error can be calculated using following modification of equation
2.7 [26]:

where:
mi − point in first point cloud
si − point in second point cloud
n − surface normal at point mi
R − rotation matrix
t − translation vector
wij − equals 1 for corresponding points pairs and 0 otherwise

Feature-based laser simultaneous localization and mapping for automotive applications
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There also exist further modifications of point matching that can improve ac-
curacy relative to point-to-plane ICP. Information about surfaces can be extracted
from both point clouds. This method was implemented in Generalized-ICP [26]
and named by authors plane-to-plane ICP. It relies on the assumption that all me-
asured points are not random 3D points located in space, but instead, they are set
of points lying on sampled planar surfaces.

Chapter 2 State of the art
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2.3 3D LASER LOCALIZATION SYSTEMS

2.3.1 LOAM

LOAM (Lidar Odometry and Mapping) is a real-time self-localization method
proposed by Ji Zhang and Sanjiv Singh [32, 33]. Initially, it was used in combina-
tion with a single line scanning lidar sensor but it was also adapted for multi-line
3D laser scanners. The processing diagram of this system is shown in Fig. 2.3.

Figure 2.3: Block diagram of LOAM system [32], consisting of point-
to-point matching in lidar odometry, point-to-map matching in lidar
mapping and final transformation integration

The processing flow of the LOAM system consists of a few steps, starting
with the lidar odometry that performs matching of registered point clouds. It is
followed by a less frequent point cloud to map matching in lidar mapping. The
result of the processing is an environment map and a transformation that comes
from joining the last lidar mapping pose estimate with the most recent lidar odo-
metry increment.

The main feature of LOAM that distinguishes it from other methods, is a fact
that it combines two processing pipelines that run simultaneously but asynchro-
nously. The first of them is odometry that determines the sensor’s pose based on
laser measurements. It does not use any wheel encoders nor GPS receiver for this
purpose but instead calculates movement increments based on matching subse-
quently registered scans. This causes the odometry to be prone to drift over time,
but it gives a rough estimation of the sensor’s location for further processing. It
runs at high frequency (10 Hz) due to lower computational demands. The second
algorithm (mapping) is responsible for creating a map of the environment by re-
gistering and matching subsequent scans to a map. It usually runs at ten times

Feature-based laser simultaneous localization and mapping for automotive applications
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smaller frequency (1 Hz), but it provides a more accurate pose estimate than the
odometry.

Both odometry and mapping are based on matching features extracted from
individual scans. These features can be assigned to two groups: sharp edges and
planar surfaces. Points are arranged into these groups, based on their smoothness
parameter, calculated upon the neighborhood of the point using equation [33]:

where:
i, j − point index
L − coordinate system
S − set of i points included in the same scan

− coordinates of point i in the coordinate system L

Points with the highest value of smoothness parameter are considered edge
features while points with the smallest value are named plane features. The num-
ber of selected points from a single scan is limited by threshold c. To ensure even
distribution of features their number is also limited based on which region of the
scan they were detected. For this purpose, each scan is divided into four subre-
gions with a maximum number of 2 edges and 4 planar features per subregion.
These numbers are partially dictated by the used laser scanner. What is more, pla-
nes that are parallel to the laser beam and occluded regions are rejected as they
are considered to be unreliable.

Laser Odometry Odometry is used to estimate motion and pose of the
sensor, based on correspondences found on subsequent scans. Block diagram pre-
senting general odometry steps is shown in Fig. 2.4.

Figure 2.4: Block diagram of LOAM odometry, that is used to generate
undistorted point cloud and pose transform based on previous and actual
scan

Chapter 2 State of the art
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At first, points from previous and actual point clouds are divided into the
edge and planar features. The next step is to find correspondences between them.
It is done by searching for the closest neighbors for all the points included in both
clouds, using for this purpose k-d tree algorithm. In the described system, the
linear feature is represented by two points, while planar one by three points. Be-
cause the used scanner provides only a single scan line and is constantly rotating
during measurement acquisition, all the features must be found on two or three
subsequent scans. After corresponding points were found, the algorithm calcula-
tes distances between them. For a given edge point i, and its corresponding edge
line formed by points j and l, the point to line distance dε can be computed using
the following equation:

where:
− coordinates of points i, j and l respectively

In an analogous way, for a given planar point i, and the corresponding planar
patch formed by points j, l, m, the point to plane distance dH is calculated as:

In order to calculate pose transform between starting time of the lidar sweep
(tk) and given point’s i registration time stamp (t(k,i)), the following equation is
used:

where:
t − current timestamp
tk − starting time of the lidar sweep k
t(k,i) − i point timestamp

− the lidar pose transform between [tk, t]

Feature-based laser simultaneous localization and mapping for automotive applications
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− the lidar pose transform between [tk, t(k,i)]

Above equation is based on linear interpolation of previously calculated
transform , consisting of translations and
rotations in x, y and z axes. Given and its skew symmetric matrix , the
corresponding rotation matrix is defined with the use of Rodrigues formula:

Afterwards, coordinates of a point i can be calculated as:

where:
− translation vector corresponding to
− rotation matrix corresponding to
− coordinates of a point i
− coordinates of i point correspondence

By combining equation 2.14 with the distances calculated between both edge
and planar point correspondences, using equations 2.10 and 2.11 accordingly, the
following geometric relationships can be achieved:

where:
Ek − set of edge points
Hk − set of planar points

Eventually, by combining equations 2.15 and 2.16, the following nonlinear
function is obtained:

Next step is to compute the Jacobian matrix and solve equation
2.17 in order to estimate motion and calculate the most accurate transform spe-

Chapter 2 State of the art
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cifying traveled distance. It is accomplished using the Levenberg–Marquardt
algorithm to iteratively minimize d:

The algorithm stops when it converged or the the number of allowed ite-
rations was exceeded. The result of the odometry is a point cloud without the
distortion caused by scanner movement and also an actual pose estimate. Both of
them are used as inputs for mapping algorithm.

Laser Mapping Mapping is based on the same principle as odometry, except
that it uses 10 times more features from the current scan and matches them to the
map of the environment instead of the previous laser scan. This way it provides a
much more accurate estimation of lidar pose. Its block diagram is shown in Fig.
2.5.

Figure 2.5: Block diagram of LOAM mapping that uses odometry output
to calculate more precise pose transform and create environment map

To ease the process of finding correspondences between each scan and the map,
all the registered point clouds on the map are stored in cubes with a side of 50
m. This way only part of the map is used for matching given scan. What is more,
while looking for the correspondences, the algorithm uses covariance matrix de-
composition calculated with the use of points that surround the given feature.
Based on the calculated eigenvalues and eigenvectors it is possible to determine
whether surrounding points form an edge or planar feature and also detect its di-
rection. After correspondences are found, the algorithm performs analogous pose
optimization as in the case of odometry, which gives a pose transform estimate.
The last step is to update the environment map and reduce its size by applying
voxel grid filtering [17].

Modification The LOAM algorithm was chosen as a starting point for the
system described in this report. This is due to the fact that it offers good perfor-
mance and can work in realtime. What is more, it also achieved the best results

Feature-based laser simultaneous localization and mapping for automotive applications
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on the KITTI dataset, the most popular benchmark used for SLAM odometry sys-
tems. It is also worth to mention that the LOAM code, created by Ji Zhang, is
available for public use at online repository1.  

Chapter 2 State of the art
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2.3.2 LeGO-LOAM

LeGO-LOAM (Lightweight and Ground-Optimized Lidar Odometry and Map-
ping) is a modification of the LOAM system implemented specifically for the
usage on ground vehicles. It takes into account the fact that ground-moving ve-
hicles have reduced degrees of freedom. The idea is to divide 6 DOF estimation
into two separate optimizations. The planar features extracted from ground are
used to estimate z-axis translation with roll and pitch angles ([tz, θroll, θpitch]).
Three remaining parameters ([tx, ty, θyaw]) can be then obtained by finding corre-
spondences between points located above the ground. The processing diagram of
this system is presented in Fig. 2.6.

Figure 2.6: LeGO-LOAM system overview. Additional steps relative to
LOAM are marked by a red rectangle

The main differences, in comparison to LOAM, are the additional segmenta-
tion and feature extraction steps (marked in red) that are performed on collected
point clouds. Segmentation was implemented to provide good performance in
variable terrain environment. It is not performed on ground points, as they are
extracted and labeled at the beginning. This approach makes it possible to reject
unreliable features causing mismatching and drift such as grass.

Segmentation is performed on a range image, created by projecting registe-
red point clouds so that every point is assigned to a specific pixel in the image.
From this point, standard image segmentation can be used to group characteristic
points and extract features. As a result of this step, many small objects like leaves
and grass are removed.

Feature-based laser simultaneous localization and mapping for automotive applications
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Next step is feature extraction. It is performed based on a previously created
range image, instead of raw points. Same as in the case of original LOAM, featu-
res are divided into two groups, based on smoothness parameter calculated using
equation 2.9. LeGO-LOAM implemented also modification to the odometry step.
It utilizes labels that were assigned to points on range image for faster finding of
correspondences.

In order to find the transformation between the two consecutive scans, it uses
the Levenberg-Marquardt method, similarly as LOAM. The same method is uti-
lized during the mapping stage, whose goal is to further improve accuracy. The
map is stored as a set of features with the associated pose. This way only these
points that are located nearby are included during calculations. What is more,
LeGO-LOAM integrates the ability to detect loop closure for map refinement,
which allows to significantly reduce system drift.

Chapter 2 State of the art
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2.4 FEATURE-BASED VISION SLAM SYSTEMS

The LOAM and other systems utilizing ICP-like approaches estimate the trans-
formation based on correspondences determined by the vicinity of points in the
Euclidean space. On the other hand, the feature-based systems operating on ima-
ges try to match detected features and then further optimize their location. These
advanced systems can achieve comparable accuracy with cheaper sensors due to
a more complex processing pipeline thus being an inspiration for the systems uti-
lizing laser scans. One of the examples of these systems is the ORB-SLAM2 [18],
a system using ORB [23] detector to detect features as presented in Fig. 2.7.

Figure 2.7: Features tracked in the ORB-SLAM2 [18]

The algorithm consists of three main components that run in separate threads.
The first of them is tracking, whose goal is to estimate the camera’s localization
in a consecutive frame. The second thread is mapping and its task is to optimize
the local map using bundle adjustment [7]. It stores all the registered points and
also is responsible for deleting unnecessary ones. This way size of the map of the
environment retains a reasonable level. The third thread is loop closure detection.
This module makes it possible to eliminate accumulated drift and thus improves
overall accuracy.

Another example of feature-based system might be Dense Planar SLAM
[24]. It creates a map of the environment as a set of planes and was intended for
indoor usage because indoor scenes consist mostly of planar surfaces. The system
also uses depth images produced alternatively by RGB-D or stereo cameras. Pla-
nar features are formed by individual surfels that are extracted from images and

Feature-based laser simultaneous localization and mapping for automotive applications
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labeled. These surfels are divided into two groups. First of them are planar region
surfels and second non-planar regions surfels. Planar region surfels that belong
to the same common plane are assigned with the same parameters (normal vec-
tor and distance to a common plane) and thus form big flat areas. Created planar
regions are refined and joined over time to provide efficient memory usage, but
they are still stored as a set of individual surfels. It means that a single planar re-
gion is represented by many surface elements, which made it possible to represent
complex planes that might even have holes. Authors presented also applications
for this system, such as performing augmented reality. Using appropriate head-
sets allowed them to display user content like photos on planar surfaces such as
walls and tables.

The system proposed in this report tries to take working parts of the vision-
based systems and apply them in the laser-based SLAM. For example, the ORB-
SLAM2 optimizes the location of the features based on measurements. A similar
procedure could be used in the proposed system to optimize the plane equation
based on the points assigned to that feature.
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Chapter 3
Proposed feature-based 3D laser

SLAM system

Although the ICP algorithm is one of the most common approaches during
point cloud matching, it has several drawbacks. One of them is the fact, that it
has relatively poor performance in terms of computational speed. What is more,
it requires many iterations to achieve satisfying accuracy. For that reason, many
variants and alternative solutions were developed. One approach, used in vision
SLAM systems, is to use more elaborated features instead of raw points for mat-
ching. This approach was an inspiration for the system described in the report.
Source code of implemented solution is available in the online repository1.
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3.1 FEATURE REPRESENTATION IN THE SYSTEM

The original LOAM system stores the map as points marked either as edges or
planes but these points do not form larger groups. The proposed solution makes
it possible to represent a big group of points by a single, high-level feature. As a
result, the feature-based system can represent the map of the environment with a
smaller number of features when compared to the LOAM. This is the result of a
different approach, which is especially visible in the case of large planes. In the
original LOAM, all planes for optimization are formed from the five closest po-
ints, while in the proposed system their number can vary depending on the size
of the plane. If we consider one big plane, such as a wall of the building, it can
be stored as one big element instead of many small ones. This way it is easier to
manage all the features, find correspondences between points or even detect some
objects. The comparison between the proposed representation of a wall and the
representation in the original LOAM is presented in Fig. 3.1.

Figure 3.1: Comparison between the high-level planar feature in
the modified LOAM system (left) and the cloud of planar points
in the original LOAM system (right)

In the proposed system, the created map of the environment consists of both
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edge and plane features, but only the latter ones were modified to aggregate a big
number of points. This is due to the fact that the planar features are inherently
larger and thus have a greater influence on the final estimate of the system. A dia-
gram presenting the structure of the stored environment map is shown in Fig. 3.2.

Figure 3.2: Structure of stored environment map consists of ed-
ges stored as points belonging to edge features and planes
forming high-level features

The single planar feature is represented by a plane equation calculated ini-
tially from several nearby points collected during a single laser scan. It has the
following form:

where A, B, C, D are the coefficients of the plane. This equation is updated every
time new points are added to that feature but only when the number of points for-
ming the feature is smaller than the threshold set to 30 points. A data structure
representing the planar feature contains also modified points that were down-
sampled by a voxel grid filter and their statistical parameters like mean value and
covariance matrix. These parameters in combination with a plane equation are
used when two features are considered for merging to determine whether they
overlap, what was described in detail later in Section 3.1.3. All features have also
coefficients describing their planarity and curvature. Planarity p is computed as
a percentage of points with distance to the plane, which they create, smaller than
certain value (0.2 m in the case of developed system):
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where:
m − number of points within a distance of 0.2 m from plane
N − number of points belonging to the selected feature

Curvature is calculated using eigenvalues that are obtained by Principal
Component Analysis (PCA) of a given feature’s covariance matrix of points for-
ming the feature. It is computed with the use of the following equation [24]:

where:
c − curvature parameter
λi − eigenvalues of the covariance matrix of points forming the fe-

ature

Both of these coefficients provide similar ways to verify whether the given
feature is planar and valid. The main difference between them is the fact that the
planarity parameter might be improved by selecting points with a distance to the
plane that exceeds the threshold and then deleting them. In contrast, there is not
such a possibility while calculating curvature, as it is based only on eigenvalues,
thus improving this parameter would require some additional calculations. Usa-
bility of the mentioned parameters was also discussed more broadly in Section
3.1.2.

All features have also some additional parameters, for example, the number
of points, that are used mainly for statistical purposes. Management of all the cre-
ated planes is accomplished in few steps consisting of creating, updating, deleting
and merging of features. The general processing pipeline is shown in Fig. 3.3.

Figure 3.3: Processing pipeline implemented in the system, consisting of
creating, updating, deleting and merging planar features

All the mentioned steps are described in detail in the following sections.
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3.1.1 Creating planar features

The plane equation can be calculated using a minimal number of three points, but
in order to reduce the probability of an error, the proposed method uses at least
five points. This means that every plane feature is initially created using five ne-
arby points. After that, an algorithm calculates plane equation which all newly
added points must comply with. The process of creating new features and adding
points to existing ones consists of several steps presented in Fig. 3.4.

Figure 3.4: Steps performed to match single point to the existing feature

In the first place, the implemented algorithm attempts to assign each new
point to one of the already existing features. For this purpose it calculates the
point-to-plane distance to the three nearest features using the following equation:

where:
(xo, y0, z°) − point coordinates
A, B, C, D − parameters of plane normal equation

This step, in a relatively short period, reduces the number of potential matches
as planes that are further away than some threshold, equal to 0.3 m, will be in-
stantaneously rejected. Then it calculates distances to the nearest point included
in each of the three features in order to determine which is the closest one. In this
case, the distance must be smaller than 1 m for the feature to be further consi-
dered. If there exists more than one planar feature complying with both of these
requirements, algorithm checks if one of them is considerably closer. If not, both
of the features might be rejected as incorrect correspondences may significantly
reduce the system’s accuracy. This has been achieved by comparing distances be-
tween the given point and the closest points contained in two nearest features. If
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the ratio of these distance is greater than 0.7:

where:
d1min − distance between given point and closest points in first con-

sidered feature
d3min − distance between given point and closest points in second

considered feature

meaning that they are very similar, given point will not be assigned to any feature
at all.

Summarizing, in order to add single point to the existing feature, following con-
ditions must be fulfilled:

• Distance to existing plane (d2) must be smaller than 0.3 m
• Distance to nearest point included in that feature (d1) must be smaller than

1 m
• Distance to the nearest point in the second closest feature (d3) must be

greater than 0.7·d1

New points are assigned to existing features only if all of these conditions are
met. The first of them ensures that the given feature will not grow in the direction
perpendicular to the plane, whereas the second one prevents adding the feature
points that satisfy the plane’s equation but are located too far away. The third one
assures that matching was performed with high confidence. These required di-
stances (d1), (d2) and (d3) are also shown graphically in Fig. 3.5.

Figure 3.5: Distance to the closest point (d1), distance to the clo-
sest plane (d2) and the distance to the second closest plane (d3)
are all considered during the addition of a point to the existing
planar feature
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The aforementioned parameters are responsible for the number and the size
of the created features in the system. Their values were obtained as a result of a
series of simulations.

If a given point cannot be assigned to any existing feature with at least 5
points, the algorithm tries to find an existing group of points that could form
one. Features smaller than 5 points have neither computed plane equation nor any
other statistical parameters, so a new point can be added to them if it is just close
enough. The distance between that point and the nearest point in that group must
be smaller than 1 m.

If such a group of points was also not found, the new single-pointed feature
is created. Although it consists of only one point, it might get enlarged by new
ones during the processing of the rest of the scan. In other words, it creates an
initial structure to which subsequent points can be added.
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3.1.2 Updating and deleting features

Because of the large number of features that are created during each scan, which
requires a significant amount of computation time, there is a need to reduce it.
This has been accomplished by removing too small features and also by merging
co-planar ones. What is more, also the number of points in each feature is redu-
ced by applying a voxel grid filter. Subsequent steps are presented in Fig. 3.6.

Figure 3.6: Steps performed to update existing features and delete too
small or invalid ones

After each laser scan has been processed and all points were assigned to fe-
atures, the algorithm performs all the necessary updates. In the first step, it looks
for planes smaller than 5 points and marks them for deletion. Moreover, features
that consist of less than 15 points after processing of 3 scans are also deleted. This
prevents storing a big number of small features as they are not desirable. After
that, it applies a voxel grid filter to reduce the number of points in all remaining
features and also checks if they are still valid ones. For this purpose it uses pa-
rameters calculated using previously presented equations 3.2 (planarity) and 3.3
(curvature). Depending on the required accuracy their value might vary, but for
the purpose of the report planarity threshold was set to 80% and curvature thre-
shold to 0.00015, which was based on the value used in [24]. All features that do
not comply with these requirements are selected to be deleted. The removal of
the selected planes is done in the third step of the algorithm. Because all features
are stored in a single vector, deleting one of them requires some additional ope-
rations, for example, relocation of all remaining elements. In order to reduce the
time necessary during this operation, all previously selected features are deleted
at once.
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3.1.3 Merging features

The last stage of the algorithm has the task to perform the merge of co-planar and
overlapping features. Merging algorithm also consists of a few steps (Fig. 3.7),
with conditions that check if two planes are parallel to each other and if the di-
stance between them is small enough.

Figure 3.7: Steps performed to merge two features, based on angle, mat-
ching error and distance between them

At first, angle α between two planes is calculated using following equation:

where:
ni − normal vector of the i-th plane

For the implemented system its threshold value is equal to 10°, which means
that two planes for which this angle is bigger than 10° cannot be merged. If this
condition is met, the algorithm computes mean error based on point-to-plane di-
stances between all the points from the first feature and second plane to which
they are to be merged. This procedure is also repeated in the other direction, me-
aning that also error between points from the second feature and the first plane is
calculated:

where:
ε1 − first calculated error
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ε2 − second calculated error
− distances between points from first feature and second feature’s

plane
− distances between points from second feature and first feature’s

plane
N1 − number of points in the first feature
N2 − number of points in the second feature

Both of these errors must be smaller than 0.1 m in order to continue the mer-
ging procedure. The considered angle α and exemplary distance d1, required to
calculate matching error are shown in Fig. 3.8.

Figure 3.8: Angle between two planes (α) and exemplary point-
to-plane distance (d1)

In the third step, the algorithm searches for the smallest distance between
two points belonging to two different planes in order to determine if both features
are located close to each other (Fig. 3.9). The found distance d2 must be smaller
than 1 m. Similarly, as in the case of creating features, this prevents the system
from forming plane features that are inconsistent.
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Figure 3.9: Distance d2 between two points that belong to planes
considered for merge

If steps above were completed successfully, two planes can potentially be
merged, unless it would cause the new planar feature to be invalid. Because mer-
ging two planar features may cause the new feature to be incorrect, it is necessary
to verify it. This is once again achieved by utilizing parameters like planarity and
curvature. If the values of these parameters remain within an acceptable range
after merging operations, then it can be performed. Otherwise, merging is aban-
doned, as it would cause these features to be deleted in the next iteration.
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3.1.4 The example of high-level planar features

The amount and size of created features depend heavily on parameters that are
used during the process of forming and merging. The most important ones, in this
case, are distances that specify the maximal spacing between given points and
also between points and planes. An example of biggest features created during
tests (described in detail in Section 4.2) is shown in Fig. 3.10.

Figure 3.10: Example of planar features created during conduc-
ted experiments, showing that they form big planar surfaces
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It can be seen, that biggest features are formed by objects, such as walls and
road surface, even if they are not perfectly flat. Applied parameters values were
chosen as a compromise between accuracy and the size of features. If these limits
were too restrictive, there would be many small planes lying close to each other.
This would reduce algorithm accuracy, as their equations could be incorrectly es-
timated. On the other hand, assigning them too big values would lead to forming
spread point clouds instead of planes, also causing a reduction of accuracy. For
this reason, the goal was to experimentally determine the values of parameters
that will allow for covering objects, such as building walls, as single planes.
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3.2 DETERMINING CORRESPONDENCES BETWEEN THE SCAN AND
THE MAP

The main difference between the original and improved systems lies in the map
representation.

In the case of the proposed solution, the map consists of much bigger plane
features. The consequence of this is a different approach during searching for the
correspondences between scan points and features from the map. These corre-
spondences are used to determine the plane equation to which a given point will
be adjusted during the optimization step. Searching for them was realized by a
single function that takes at the input single point and looks through all existing
features to find the best matching one. Block diagram presenting how correspon-
dences between points and planar features are found is shown in Fig. 3.11.

Figure 3.11: Block diagram presenting steps required to find point’s cor-
responding feature

As can be seen, correspondences, that are necessary for optimization, are calcu-
lated in a very similar way as during the process of creation of features. In order
for the point to be taken into consideration during optimization, it has to comply
with the same conditions, as described in Section 3.1.1. The difference lies in the
values of the parameters specifying required distances, that were also selected ba-
sed on conducted experiments and obtained the result:

• Distance to existing plane (d1) must be smaller than 0.5 m
• Distance to nearest point included in feature (d2) must be smaller than 0.6

m
• Distance to the nearest point in the second closest feature (d3) must be

greater than 0.7·d2

Found correspondences are used as constraints during the optimization step in or-
der to iteratively improve the accuracy of the calculated laser scanner’s pose. The
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original system performs this step until the desired accuracy is reached or a ma-
ximal number of iterations is exceeded. For the original system these parameter
values are:

• Maximal number of optimization iterations: 10
• Translation increment threshold: 0.05 m
• Orientation increment threshold: 0.05°

Because the optimization step was not changed for the purpose of the report, the
mentioned values are also used in a modified system.
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3.3 NOVELTY OF THE PROPOSED SYSTEM

Using features gives an advantage over points due to the fact that they create a
logical structure and organize big groups of points. Thanks to that, it is possible
to store only selected variables that describe the given feature. For example, big
planar surfaces such as walls of buildings or roads can be represented as a single
structure with highly reduced points number. Another advantage of feature-based
representation of the environment is the fact, that it allows achieving better accu-
racy because points that can not be associated with any features or form too small
groups will be rejected. To sum up, the main novel contributions of the proposed
system are:

• Implementation of planar features allowing for higher-level representa-
tion of created environment map in the existing system

• Development of processing pipeline and management of features repre-
senting environment map

• Modified procedure of finding correspondences between scan points and
map that makes use of the feature-based representation

• Improved pose estimation due to increased accuracy of the proposed so-
lution
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Chapter 4
Experimental evaluation

4.1 EXPERIMENTAL SETUP

The computer used in the experiments was equipped with the Ubuntu 18.04 and
Robot Operating System (ROS) Melodic Morenia. The main advantage of the
ROS system is the fact that it offers a large collection of libraries and packa-
ges that can be used free of charge. Thanks to that, there is no need to develop
own device drivers as many of the sensors used in robotics have dedicated ROS
packages. It also provides many tools for the visualization of all kinds of data.
An example can be RViz that was used during experiments for displaying robots
position, its odometry and data coming from sensors, such as Inertial Measure-
ment Unit (IMU) orientation, camera image, GPS trajectory, and point clouds
read from laser scanners.

Datasets used for the purpose of the report were collected using two different
setups, described in the following sections. This made it possible to test the im-
plemented system in different conditions and environments.
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4.1.1 3D laser scanners

Applications, where 3D SLAM is necessary, require sensors that provide 3D data
points. Examples of these sensors are RGB-D and stereo cameras or LiDAR (Li-
ght Detection and Ranging). Both of these groups provide information about the
external world and can be used in the mobile robotics or automotive industry
to detect obstacles or measure the speed and direction of moving objects. Each
group has its pros and cons that arise from its principle of operation. LiDARs are
much less susceptible to light conditions as they emit their own light and measure
the time necessary to cover the distance from the sensor to object back and forth.
This means that they can operate at day and night without any significant diffe-
rence. What is more, they are characterized by robustness to interference from
sunlight or headlights of another vehicle in contrast to vision systems. On the
other hand, most cameras, excluding monochrome ones, are able to detect colors,
which can be very useful in some applications. Additional color information is
useful to detect traffic or brake lights and can improve road signs recognition.
Cameras are also much cheaper compared to LiDARs that can cost tens of tho-
usands of dollars at present.

The report focuses only on LiDAR systems and sensors used for this purpose
are Velodyne VLP-16 and Sick MRS-6124, presented in Fig. 4.1.

Figure 4.1: Sick MRS-6124 [27] (left) and Velodyne VLP-16
[31] (right)
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Table 4.1: Comparison of Sick MRS-6124 and Velodyne VLP-16

The main differences between scanners are the field of view and the density
of measurements. As can be seen in Tab. 4.1, Velodyne VLP-16 has 360° ho-
rizontal and 30° vertical field of view, while in case of Sick MRS-6124, these
values are limited to 120° and 15° accordingly. Velodyne’s higher and wider
field of view is achieved at the expense of smaller point density, which can be
problematic in applications such as mobile robotics or autonomous cars. In or-
der to reliably detect and recognize smaller or narrower objects, like for example
lamppost and the human body, a maximum available resolution is desired. Ano-
ther parameter that gives an advantage in favor of Sick MRS-6124 is its higher
maximum range. The difference is also noticeable in the acquisition of the me-
asurement of both scanners. Velodyne VLP-16 provides data from 16 scanning
lines that are sent line by line in the top-bottom order. In comparison, data co-
ming from the Sick MRS-6124 scanner is divided into 4 groups that are scanned
one after the other. Each group consists of 6 scanning lines that are registered at
the same time. Altogether it gives 24 scan layers, which translates to 0.625° ver-
tical resolution, what is also shown in Fig. 4.2.
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Figure 4.2: Scan layers and groups of Sick MRS-6124 [27]

Because of the fact, that scanner simultaneously registers points only from
a single group, measurements coming from subsequent groups are shifted in
time. This makes it difficult to eliminate the influence of scanner movement on
measurements as points in different scanning groups will be registered in dif-
ferent moments. Although both scanners are suitable for SLAM purposes, Sick
MRS-6124 was chosen for the developed system. It turned out to be better su-
ited for automotive purposes than Velodyne VLP-16, despite the fact, that it has
only 120° horizontal field of view. As mentioned earlier, the reason for this is the
better resolution in both horizontal and vertical axes. This results in a higher den-
sity of points detected in front of the vehicle, which is the most important spot
in terms of automotive applications. The comparison of the laser-based system
using the data from both scanners is described in Section 4.3.1.
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4.1.2 Mobile robot used in the experiments

The mobile robot used for collecting the first datasets is shown in Fig. 4.3. It has
four independent motors coupled with every wheel and uses differential steering,
meaning that it takes turns by changing the rotational speed of opposing wheels.
The robot used in experiments was equipped with two laser scanners mounted at
the top of aluminum construction. The role of the computer unit was temporary
fulfilled by a laptop placed on the robot’s base. Owing to the fact that scanners
were mounted on a wheeled vehicle, they could be mounted at a fixed angle.
Velodyne VLP-16 was mounted parallel to the ground, so that it scans all the
surroundings horizontally. Sick MRS-6124 was mounted upside down at slightly
upward angle, equal to 6°.
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Figure 4.3: Velodyne VLP-16 and Sick
MRS-6124 mounted on the mobile robot that
was used in the experiments

Although this setup made it possible to verify and test if original LOAM
software works correctly with both laser scanners, there was no GPS reference
trajectory to compare. Another problem that occurred during experiments was as-
sociated with robot construction. Because scanners were mounted at the top of
the robot its center of gravity was lifted and it turned out to be unstable during
acceleration and turns.
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4.1.3 Final sensor setup used in the experiments

The next step was to create a more advanced sensor system that will provide some
additional data for the purpose of testing developed software. The most needed
one was the reference trajectory that could be compared with odometry provided
by the LOAM algorithm to draw conclusions about the accuracy of the system.
To achieve this, the GPS receiver was used. Other sensors that were added in
comparison to the initial setup are RGB camera and IMU. The created setup is
shown in Fig. 4.4.

Figure 4.4: Final sensor setup consisting of Sick MRS-6124,
Ublox LEA-6H GPS receiver, PointGrey Flea3 camera and
Xsens MTi-30 AHRS

Apart from the base frame, that is equipped with three suction cups that allow
mounting the whole structure on any flat surface, setup consists of the following
elements:

• Sick MRS-6124

The only scanner used in all the following experiments was Sick
MRS-6124. Its mount has the ability to adjust the tilt angle if needed, de-
pending on the requirements. A higher downward angle enables to detect
more points on the road. On the other hand, if the goal is to detect also
walls of the surrounding buildings, the tilt angle value should be closer
to 0°. During conducted experiments, two values of downward tilt angles
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were tested: 0° and 4.5°, but no significant difference between them was
noticed.

• Ublox LEA-6H GPS receiver

Due to the lack of Differential Global Positioning System (DGPS), which
can provide few centimeters accuracy, only standard GPS receiver was
used in the described setup. Although it offers much lower positioning
precision, fluctuating around 4 m, it provides sufficient reference trajec-
tory, especially for longer distances.

• PointGrey Flea3 FL3-U3-13E4C-C camera with Kowa LM3NCM 1/1.8"
3.5 mm F2.4 lens

The PointGrey camera was used initially for debugging purposes, as it al-
lows to peek what objects are within scanners range at a given moment.
What is more, it also makes it possible to visually verify what happened
at the selected moment without the need of generating GPS trajectory.
Except that, it can be potentially used for much more complex purposes,
for example in combination with laser scanner for object detection, data
segmentation or localization. It provides additional data about the envi-
ronment, such as objects colors and shapes, that can not be obtained using
only scanners. What is more, it has a much wider field of view, which gi-
ves it an advantage in detecting very big objects, especially close ones.

• Xsens MTi-30-AHRS-2A8G4

The described setup was also equipped with Xsens AHRS, but eventually,
data from this sensor was not utilized. However, it gives the potential
possibility to compensate for sudden movements caused by bumps and
roughness of the road surface. It can also be used to provide data for fu-
sion with other sensors and thus enhances the accuracy of odometry and
mapping.

The main advantage of the built setup is its compactness and the fact, that
all the sensors are mounted at a fixed position relative to each other. Thanks to
that, there is no need to repeat the process of calibration every time it is used, but
instead, it can be performed only once.

For the purpose of outdoors tests, a laser scanner, with all the other sensors,
was mounted on the roof of the car, what is shown in Fig. 4.5a. This solution
has an advantage over the mobile robot setup because of a much more steady at-
tachment and variable tilt angle. It also gave the possibility to validate LOAM
software with a higher velocity of the vehicle.

Chapter 4 Experimental evaluation

46



Figure 4.5: Sensors mounted on car’s roof (left) and bus (right)

The experiments were also conducted in the road traffic and urban areas. As
mentioned at the beginning of the report, a similar system is developed for the
purpose of implementing ADAS on electric city buses, that are about to be produ-
ced in the near future. Because of that, it was possible to utilize datasets collected
during a test with the city bus. Similarly to previous ones, all the sensors were
mounted at the top of the vehicle, as shown in Fig. 4.5b.
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4.2 RECORDED SEQUENCES

In order to test and verify both original and implemented system’s accuracy,
several datasets in different locations were recorded. This made it possible to
compare the performance of the system in different conditions. Tests were held
indoors and outdoors as the results were expected to vary depending on the
properties of the surroundings. This section provides a general overview of the
conducted experiments and describes how and where all data were collected,
while the analysis of the obtained results is presented in Section 4.3. The sum-
mary of collected sequences used for the analysis of the system can be found in
Tab. 4.2.

Table 4.2: Recorded sequences selected for the analysis

The first sequence was recorded in the outdoor environment at PUT (Poznan
University of Technology) campus using a mobile robot setup. Its main purpose
was to compare Sick MRS-6124 and Velodyne VLP-16 scanners to decide which
of them is more suitable for automotive application on the city bus. From this
point, all the following datasets were recorded using an updated setup presented
in Fig. 4.4. It includes tests conducted in the indoor environment (PUTindoor),
which were performed in the Centre of Mechatronics, Biomechanics and Nano-
engineering building, located at PUT campus. During these experiments, all the
sensors were hand-held due to the lack of a smaller and more maneuverable mo-
bile robot. The next sequence (PUT-car) was recorded also at PUT campus, but
this time all the sensors were mounted on the roof of a car. The surrounding was
mainly a car park located in between buildings.

The last three sequences (MG-centre, MG-service, MG-suburbs) were recor-
ded in Murowana Goślina, a small town located nearby Poznań, with the sensors
placed on the roof of a bus. The MG-centre dataset was collected in the city cen-
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ter including a town square and relative narrow streets with buildings on each
side. In a similar, but more suburban conditions the MG-suburbs dataset was re-
gistered. The MG-service sequence was obtained at the SBC service place, which
imposed that the bus was driving with significantly lower velocity compared to
the previous ones.
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4.3 ACCURACY ANALYSIS

The accuracy analysis was performed on the systems with disabled optimization
of edge features. This applies to both original and modified LOAM. Without ed-
ges, the systems utilized only planar features, which highlights the impact of the
proposed modifications. This made it possible to compare both systems based on
results obtained using only planar points, but it is worth to mention that it also
reduced accuracy to a certain degree.
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4.3.1 Outdoor tests with the mobile robot

The first dataset was recorded using a mobile robot at PUT campus. As mentio-
ned earlier, its point was to initially compare two laser scanners and determine
which would be a better solution for the developed system. Examples of single
scans registered using both laser scanners are shown in Fig. 4.6.

Figure 4.6: Comparison between scans captured with Sick
MRS-6124 (A) and VLP-16 (B)

It can be seen that Sick MRS-6124 provides much more dense measurement
points in comparison to Velodyne VLP-16 as could be also deduced based on
both scanner specifications contained in Section 4.1.1. Velodyne VLP-16 has an
advantage of 360° field of view but it cannot be used to reliably detect small or
narrow objects like tree trunks and lamppost on single scans. It also provides fe-
wer points measured at the ground surface in front of the sensor, which may lead
to the SLAM system drift in the vertical axis. On the other hand, it is indepen-
dent of drive direction or robot orientation, as long as it is mounted flat. Thanks
to that, Velodyne VLP-16 could be used during maneuvers that require driving in
reverse and generally is much less susceptible to mount location.

Data from both of these sensors were recorded in the PUT-robot dataset,
which made it possible to compare LOAM system results obtained with different
scanners. The video presenting the working system during this sequence is ava-
ilable online1. The comparison of registered trajectories of the mobile robot and
calculated error are shown in Fig. 4.7 and Tab. 4.3 accordingly.
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Figure 4.7: Comparison of trajectories obtained using Sick
MRS-6124 and Velodyne VLP-16 for PUT-robot dataset (A)
and robot’s trajectory drawn on the Google Map (B)

Table 4.3: Value of error between Sick MRS-6124 and Velodyne
VLP-16 trajectories obtained using original LOAM for PUT-robot data-
set

For the purpose of plotting trajectories and calculating error between them,
an existing SLAM evaluation script [28] was used. It is publicly available2 and
makes it possible to compare both system’s accuracy. Firstly, it associates pose
pairs based on recorded timestamps and afterward uses SVD to align both trajec-
tories, so that the computed error takes the minimal value.

As can be seen, both scanners provide similar results. A Root Mean Square
Error (RMSE) between two obtained trajectories for the PUT-robot sequence is
equal to 1.06 m, which translates to 0.65% difference, as the sequence total di-
stance was 162.58 m. This is also evidence of the versatility of the laser SLAM
system, as it can be adapted to work with different scanners.

2 https://vision.in.tum.de/data/datasets/rgbd-dataset/tools
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4.3.2 Indoor tests at PUT

For the purpose of testing the implemented algorithm in the indoor environment,
one of the datasets was recorded inside the building. Due to the fact, that there are
much more smooth plane surfaces than outdoors, the created system was expec-
ted to work more precisely. This is because implemented feature-based algorithm
approximates all detected surfaces as planes, and subsequently uses these points
for optimization. An example of plane features that were created during the in-
door test is shown in Fig. 4.8 and also in the video attachment3.

Figure 4.8: Features created during indoor environment tests
(PUT-indoor dataset)

On the other hand, the used laser has a minimum range limited to approxima-
tely 0.5 m, so this can be a problem in very narrow corridors. Another difficulty
might be caused by a fact, that all sensors were held in hands during these tests, as
the mobile robot would be hard to operate indoors. Because of that, laser scanner
and the rest of the sensors could not be mounted at a fixed tilt angle, but instead
were vulnerable to movement caused by human steps. Unfortunately, there was
also no reference signal to verify the results, as GPS could not be used. For this

3 https://youtu.be/pJKxojGmP_Q
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reason, the analysis of the indoor sequences is reduced to a comparison of the
original and modified LOAM system’s trajectories presented in Fig. 4.9 and Tab.
4.4.

Figure 4.9: Error between original and modified system trajecto-
ries for PUT-indoor dataset

Table 4.4: Value of error between the original and modified system for
PUT-indoor dataset

The difference between original and modified LOAM system in an indoor
environment is unremarkable, as output trajectories are very similar. The RMSE
calculated between them at a distance of 107.08 m is lower than 0.5 m and it is
hard to determine which systems give better results without any ground truth tra-
jectory. Nevertheless, it can be assumed that both systems can operate to some
degree in indoor conditions.
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4.3.3 Outdoor tests with the car setup

Successive tests were conducted at PUT campus car park with the use of the
sensors attached to the car’s roof, as described in Section 4.1.3. The recorded
trajectory is shown in Fig. 4.10. It also presents trajectories obtained by original
LOAM and GPS, which was used as a reference. The video presenting a working
system for this dataset is available in the attachment4.

Figure 4.10: Sequences recorded during outdoor test (PUT-car
dataset)

Obtained results from both modified and original system are shown in Fig.
4.11.

4 https://youtu.be/NGi4rnJSzlM
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Figure 4.11: Translational error relative to GPS data for original
(A) and modified (B) LOAM system for PUT-car dataset

Fig. 4.11a presents the error between trajectory from GPS, taken as the re-
ference ground-truth signal, and the original LOAM algorithm. The graphs show
errors calculated from five trials. As can be seen, results from different trials are
not identical but are repeatable to a considerable extent. This non-deterministic
behavior may be the result of multithreaded execution of odometry and mapping,
which are synchronized in different moments. Another reason might be the high
Central Processing Unit (CPU) load, which is caused especially by mapping pro-
cess. It can potentially make it hard to perform all calculations on time, which
leads to different results across many trials.

The continuous and bold line presents averaged results. Same data coming
from implemented, feature-based system is shown in Fig. 4.11b. Third graph
(Fig. 4.12) compares the values of errors on one plot and Tab. 4.5 presents three
selected statistical parameters of the calculated error course.
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Figure 4.12: Comparison of original and modified system’s lo-
calization error relative to GPS data, calculated as average of 5
trials (PUT-car dataset)

Table 4.5: Values of localization error for original (A) and modified
LOAM (B)

It can be observed that the original LOAM has significantly higher error. Its value
is the biggest at the very beginning, despite the fact, that all generated trajectories
start with position x = 0, y = 0, z = 0. This is the result of trajectory path align-
ment performed by the script mentioned earlier. The higher drift of the original
system might be caused by inaccurate correspondences matching, especially on
big, rough surfaces like asphalt or cobblestone road. One of the biggest, notice-
able problems of both LOAM versions is its susceptibility to drift in the vertical
axis, even if there are no hills or valleys at a given moment. It could be potentially
fixed by utilizing IMU to compensate for sudden motions. Alternatively, degree
of freedom in that axis could be reduced, but in that case, the system would work
properly only on flat, lowlands terrains.
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4.3.4 Outdoor tests with the bus setup

The final experiments were conducted in Murowana Goślina, a small town lo-
cated nearby Poznań. They were conducted with the use of sensors that were
mounted on the bus. Selected sequences that were recorded and used for analysis
are shown in Fig. 4.13. Additionally, the MG-centre dataset is presented in the
video attachment5.

Figure 4.13: Comparison of the LOAM, modified LOAM and
the GPS trajectories recorded during outdoor tests in Murowana
Goślina town with the bus setup

The trajectories marked on the images were recorded separately and overlaid
on the Open-StreetMap with the use of rviz_satellite6 ROS package. The discre-
pancy between starting points locations is again a result of trajectories alignment.

5 https://youtu.be/Mj569vpXq9w
6 https://github.com/gareth-cross/rviz_satellite
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More accurate analysis and error comparison are shown in Fig. 4.14.

Figure 4.14: Comparison of original and modified system’s lo-
calization error relative to GPS
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As can be seen, similar results were achieved while analyzing localization
errors from other datasets. The smallest discrepancy between original and modi-
fied system is noticeable for MG-service sequence. It might be caused by the fact,
that during this test bus was driving with the significantly smaller velocity, equal
to around 6 km/h.
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4.4 PUBLICLY AVAILABLE KITTI DATASET

The KITTI dataset [8] is one of the most popular validation and testing bench-
mark for camera-based or laser-based localization systems. The recorded dataset
includes data recorded from two, grayscale and color, stereo PointGray cameras,
the Velodyne HDL-64 laser scanner and OXTS RT3003 IMU/GPS navigation
system with Real Time Kinematics corrections that is used as a ground truth re-
ference. All sensors were mounted on the roof of the car, as shown in Fig. 4.15.

Figure 4.15: Sensory setup used for recording KITTI dataset,
consisting of four video cameras, Velodyne HDL-64 3D laser
scanner and a combined GPS/IMU inertial navigation system

The data was recorded in the city of Karlsruhe and its surroundings. Re-
corded sequences are divided into 3 main categories: city, residential and road.
KITTI dataset is commonly used for machine learning purposes associated with
automotive needs, such as semantic segmentation or object detecting and trac-
king. Due to the fact, that it contains both camera images and laser scans, it is also
suitable for visual and laser SLAM system validation. The utilized laser scanner
has the advantage of 64 scanning lines and higher resolution than sensors descri-
bed in Sec. 4.1.1. The full specification of the Velodyne HDL-64E laser scanner
is shown in Tab. 4.6.
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Table 4.6: Specification of Velodyne HDL-64E LiDAR used in KITTI
dataset

The KITTI benchmark consists of 22 sequences, 11 of which are provided
with GPS reference trajectory for training possibilities. The remaining sequences
are used for evaluation and for that reason they come without public GPS ground
truth. For the purpose of validating the developed system, the sequences no. 00,
05, 06 and 07 were chosen. All of them are labeled as residential sequences and
were recorded in the suburban environment. In order to make it possible to uti-
lize the developed SLAM system in ROS, it was necessary to convert selected
raw data sequences7 into .bag files. For this purpose, the kitti_to_rosbag8 pac-
kage was used. The result evaluation was performed using the KITTI benchmark
script, which made it possible to calculate both translation and rotation error and
also plot ground truth and obtained trajectory. The result are presented in Fig.
4.16 and in Tab. 4.7.

7 http://www.cvlibs.net/datasets/kitti/raw_data.php
8 https://github.com/ethz-asl/kitti_to_rosbag
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Figure 4.16: Ground truth, original and developed laser SLAM trajecto-
ries generated by KITTI evaluation script for selected sequences

Table 4.7: Average translation and rotation error computed for selected
sequences
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It can be seen that the average translation error in the case of a modified sys-
tem for sequences no. 00 and 05 is smaller than 2% and under 1.5% for sequences
no. 06 and 07. The trajectories obtained using original and modified LOAM are
very similar. The biggest difference is noticeable in the case of sequence no. 00
in favor of the developed system. The results depend not only on the surrounding
environment that varies across different sequences but also on the path length and
vehicle speed. Influence of these factors is presented in Fig. 4.17.

Figure 4.17: Translation error plotted against path length (left) and ve-
hicle speed (right) for exemplary sequence no. 5 (left) and no. 6 (right)

Based on the above results, it can be noted that the translation error decreases
with the path length, which might be caused by the inaccurate pose estimation
right after system initialization. It is also significantly affected by the velocity of
the car, as the average localization error increases with increasing driving speed.
It is worth to mention that the developed system is not intended to work in every
environment as it requires many objects with preferably big planar surfaces such
as buildings. These requirements were fulfilled by sequences that were selected
for evaluation. An example of a created map using data from the KITTI dataset
and consisting of the planar features can be seen in Fig. 4.18.
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Figure 4.18: Example of planar features created using laser
scans from KITTI dataset

Chapter 4 Experimental evaluation

66



4.5 STATISTICAL ANALYSIS OF THE 3D LASER SLAM SYSTEMS

The feature-based system has also another advantage over the original LOAM
system. It requires a smaller number of features to represent the same environ-
ment on the map. This results from the fact that calculated constraints, necessary
for optimization steps, are more restrictive and thus more points are rejected. This
also improves algorithms accuracy, as points that are not fitted into any bigger
surface will not be taken into consideration. The number of planar points used for
optimization during the execution of the algorithm for the selected dataset (MG-
service) is shown in Fig. 4.19.

Figure 4.19: Comparison of the number of points used for the
pose optimization

It can be noticed, that the number of points used in modified software is usu-
ally smaller by 200−500. On the other hand, this number cannot be too small, as
having not enough points might lead to increased drift in any axis. Reduced num-
ber of stored points makes also the whole map smaller, what is presented in Fig.
4.20.
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Figure 4.20: Comparison of the sum of planar points that create
environment map in original and modified system

The shown graph presents a situation, where none of the past fragments of
the map are deleted from memory. Although it is easily possible to deploy such
a feature in both algorithms, this would prevent to implement loop closure and
could decrease accuracy in some cases. To sum up, a smaller number of points in
the modified system allows not only to reduce memory usage but also contributes
to faster searching of correspondences and speeds up optimization steps.
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4.6 TIME ANALYSIS OF THE 3D LASER SLAM SYSTEMS

One of the most important aspects of considered SLAM system, alongside with
its accuracy, is the performance in terms of computational speed. It should be
capable of real-time operation as most of the applications require all data to be
calculated online. This is why this section compares the time necessary for subse-
quent steps of the algorithm. The most time-consuming part of both original and
modified LOAM is calculating constraints for optimization. It includes searching
for the nearest neighbors for all points in the scan. In the original system, it is
accomplished by utilizing a k-d tree search, while modified one uses standard se-
arch performed in the loop. This turned out to be the bottleneck of the modified
system, despite the fact that a large part of points can be rejected from the search,
based on a point-to-plane distance between points and features, as described in
Section 3.2. Point-based optimization, implemented in the original LOAM, requ-
ires to find correspondences using raw points. The computational complexity of
this problem, including the process of construction and searching through the k-d
tree, is expressed by the following equation:

where:
k − number of optimization iterations
m − number of points in scan
n − number of points in map

Using features in the modified system makes it possible to reduce the number
of points that can be potentially matched, but it requires some additional calcula-
tions. In this case, complexity can be expressed by the formula:

where:
k − number of optimization iterations
l − number of planar features
m − number of points in scan
p − average number of points in a single feature

Thanks to the feature-based representation of the map, correspondences are
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found in two steps. At first, only the closest features are found, which makes it
possible to reject most of the points from further calculations. This step is ac-
complished based on point-to-plane distance and its time is directly proportional
to both the number of points in scan and features. The second step requires cal-
culating distances to each point in a given feature. Because of the fact, that the
average number of points in features is much smaller than the number of all po-
ints in the map, it can be potentially accomplished relatively fast. Unfortunately,
as mentioned earlier, the implemented solution is based on a simple search loop,
as it was not optimized in terms of computational speed, which extends calcula-
tions time in comparison to the k-d tree algorithm.

To compare both systems experimentally, the time necessary for each step
was measured. The time analysis of the original system’s odometry and mapping
node are shown in Fig. 4.21 and Fig. 4.22 accordingly.

Figure 4.21: Time analysis of individual steps performed in the
LOAM odometry thread

Figure 4.22: Time analysis of the individual steps performed in
the LOAM mapping thread

Presented values are total times, calculated as the sum of time spent on a gi-
ven step during the whole run. Even though odometry is executed with ten times
greater frequency (10 Hz) than mapping (1 Hz), it consumes nearly two times less
CPU cycles. This is due to much more accurate calculations that are performed
in mapping. It is worth noting, that optimization is the least time-demanding step
from all presented.
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As far as a modified version of LOAM is concerned, the first goal was to
check how much processing time will be lengthened after adding and storing pla-
nar features. Additional time is marked with yellow color in Fig. 4.23.

Figure 4.23: Mapping process time with additional features ag-
gregation step performed for the needs of the modified system

It can be seen that this modification extends total mapping time by around
20%. Unfortunately, using created features for optimization takes a much longer
time. This is because of search time that is necessary to find points corresponden-
ces using simple loops for searching through all points in a given feature. What
is more, this time is also multiplied by the number of iterations used during the
optimization step, so finally, whole mapping time turned to be around two times
longer than originally, what is presented in Fig. 4.24.

Figure 4.24: Time analysis of the individual steps performed in
the modified LOAM mapping thread

Although this has not been accomplished in the system described in the re-
port, the calculated time might be potentially reduced. It could be achieved by
using the same k-d tree method for finding the point’s closest neighbors in a gi-
ven feature.
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Chapter 5
Conclusions

5.1 SUMMARY

The report describes in detail implemented feature-based modifications and pre-
sents a developed solution, which improves the existing laser SLAM system. It
gives an overview of the whole process of creation and management of features
that replaced the original point-based representation of the environment map.

It also presents experiments that were conducted in order to verify if the cre-
ated system works in line with expectations. Experiments were performed using
a custom sensor setup that made it possible to record test sequences in different
conditions, including both indoor and outdoor surroundings. System evaluation
was also performed using publicly available KITTI benchmark.

The report contains also an analysis of the results and a comparison of the
modified and original systems. The comparison was performed taking into con-
sideration obtained accuracy and also general characteristic of both systems,
including the number of points stored in the map and used during the optimization
step. What is more, it contains time analysis of subsequent steps, as this is one of
the most important aspects of such a system aside from accuracy.
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5.2 CONCLUSIONS

The feature-based system has the potential of improving accuracy as it reduces
errors in scanners measurements. Features are created using a greater number of
points, which translates into better precision of calculated planes equations. The
downside of the developed system is increased processing time that is the result
of non-optimized points operations. It could be potentially reduced and improved
by using efficient 3D space decomposition such as k-d tree, implemented in the
original system.

Conducted experiments showed that as far as accuracy is considered, the
modified system achieved better results in all recorded sequences. The proposed
system is also characterized by a lesser number of points that are used for pose
optimization. This is due to the fact that constraints are calculated in a more re-
strictive manner. Thanks to that, correspondences are computed more precisely,
thus provide better accuracy and results. The tests were performed not only at
PUT campus, but also on a public road to verify its efficiency in traffic condi-
tions. Although comparison was based on the ground truth trajectory obtained
using a standard GPS module, it can be concluded that it was a sufficient solu-
tion for the recorded sequences, especially long-distance ones. Tests confirmed
also that it is possible to use laser scanners for localization purposes in the indoor
environment.

It is worth to mention that developed system performance substantially de-
pends on selected parameters values, as they have a significant influence on size
and number of created features. Therefore, inappropriately selected ones might
cause the system to work unreliably. For this reason, a significant amount of time
was spent to select universal parameters values that were finally utilized and are
suitable for different kinds of environments.
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5.3 FUTURE WORK

The developed system gives a more accurate localization estimate than the ori-
ginal one, but there is room for many improvements in terms of the system’s
performance. First of all, it can be improved in terms of the processing pipeline.
During conducted experiments, it turned out that localization drift is caused by
points measured on moving objects like grass or leaves. One potential solution
for this could be integrating laser scans points with the camera image. This would
enable the system to perform scans segmentation based on additional information
such as RGB values of measured points. Thanks to that, it would be possible to
reject unreliable measurement that causes localization error.

The second area for improvement would be the accuracy of odometry. It is
prone to drift, which is caused for example by a sudden movement of the laser
scanner on the road bumps. One of the exemplary approach to eliminate it would
be utilizing some additional sensors like IMU to detect unexpected motions. Mo-
reover, it could also use the GPS receiver to compensate for the error in the long
term sequences. The most common way to fuse data coming from those sensors
would be to implement Extended Kalman Filter [15], as it is successfully used in
many mobile robotics [5] and SLAM [1] applications.

What is more, the report focuses only on planar features that are used to re-
present a map of the environment and to find optimization constraints. However,
with relatively small effort, this idea could also be transferred to implement other
types of features such as edges.

The last proposed modification would be to use differential GPS receiver in-
stead of standard one as a source of reference ground truth trajectory. Despite the
fact, that there was available such a receiver that could be lent for the needs of the
report, it was impossible to obtain high accuracy localization mode due to pro-
blems with communication between base and rover stations. For that reason, only
the standard GPS could be used. Although it was possible to verify the efficiency
of the developed system and compare it to the original one, the results would be
much more trustworthy in the case of DGPS.
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